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A fast preliminary estimation model for transoceanic tsunami
propagation
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Abstract. A simplified one-dimensional method is proposed to estimate the height of the
leading wave of transoceanic tsunamis by means of a directivity function applied to the one-
dimensional finite difference model based on the shallow water equations. The numerical model-
ing of the 4 October 1994 Shikotan tsunami, and the analysis of its deep-ocean signature observed
at a distance of ∼6300 km from the source, as well as the analysis of the linear shallow water
equations (non-dispersive theory) and of the Boussinesq equations (dispersive theory), shows
that the frequency dispersion mechanism, as prescribed by Boussinesq equations, is a necessary
and sufficient condition to simulate the transoceanic propagation of tsunamis. The analytical
results from non-dispersive equations, as compared with those obtained using dispersive theory,
overestimate significantly the height of the leading wave of large and medium size tsunamis.
The results confirm that the linear shallow water equations solved by an explicit central finite
difference method are appropriate to simulate the tsunami propagation from the source area to
the far field. This is due to the fact that the inherent frequency dispersion in the numerical
method mimics the frequency dispersion prescribed by Boussinesq equations (Imamura et al.,
1990; Liu et al., 1995).

1. Introduction

We reexamine the equations that govern transoceanic tsunami propagation
in order to evaluate flooding risk for coastal regions after a tsunami warning.
Since 1960, only the 1960 Chile and the 1964 Alaska tsunamis have caused
damage across the Pacific Ocean basin. However, between 1991 and 1997,
13 warnings were issued by the Pacific Tsunami Warning Center (Black-
ford, 1999). The warning from the 4 October 1994 Shikotan tsunami caused
panic along the Pacific coasts of North, Central, and South America, mainly
because of the lack of a reliable criterion to evaluate the risk of potential
flooding. A reliable criterion for evaluating tsunami warnings might consist
in a database of numerical simulations of transoceanic tsunami propaga-
tions from generation regions. However, before beginning to create such a
database, it is worthwhile to reexamine the governing equations of tsunami
propagation as well as the methods of solution.

The appropriate governing equations have been a subject of debate over
the last three decades (Tuck, 1979). This is due to differences in the predicted
height of the leading wave when using linear shallow water equations, or
linear Boussinesq equations. For long propagation distances (far from the
source area), the frequency dispersion from Boussinesq equations reduces the
height of the leading wave as compared with the height obtained by using
the shallow water equations. The difference may be of a few centimeters in
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724 M. Ortiz et al.

the deep ocean, but it could be significant in the estimation of tsunami run-
up. For near-field tsunamis, in a sea deeper than 50 m, the linear long-wave
theory is said to be adequate for practical purposes; and in a sea shallower
than 50 m, the shallow-water theory including bottom friction is normally
used (Shuto et al., 1991). In some cases the single estimation of the leading-
wave height could be misleading in terms of the risk of maximum potential
flooding since the second, third, or fourth waves can be higher than the
leading one, as in the 1964 Hilo tsunami (Fig. 12), where the second wave
was higher than the leading wave.

Houston (1978) and Houston et al. (1984) concluded that linear long-
wave equations govern the generation and propagation over the deep ocean
and the continental shelf of the leading tsunami wave. They suggested that
for very large tsunamis, such as the 1964 Alaska tsunami, frequency disper-
sion is negligible during propagation except when tsunamis exhibit a bore-
like shape in their final run-up phase. Hammack and Segur (1978) agreed
that for large tsunamis, nonlinearity or frequency dispersion have no signif-
icant effect on the leading wave. Kowalik (1993) proposed a Fourth-Order
Leapfrog scheme to smoothen the effect of dispersion introduced by numeri-
cal solutions of the shallow water equations. On the other hand, Heinrich et
al. (1998) found that the effect of dispersion can be significant. They solved
the Boussinesq equations using the finite difference method. Imamura et al.
(1990) and Liu et al. (1995) also considered this effect as important. By
choosing an appropriate grid size and a time step in the finite difference
method, they were able to mimic the frequency dispersion prescribed by
Boussinesq. Yoon and Liu (1993), proposed a similar method using finite
elements.

The mechanism of frequency dispersion is not clearly established from
tsunami observations at coastal tide gauges, due to the strong influence of
local bathymetry and topography on the wave field. Thus the establishment
and validation of the appropriate governing equations for transoceanic tsu-
nami propagation is still debated. In this paper, the deep-ocean signature
of the 4 October 1994 Shikotan tsunami is analyzed to assess the effect of
frequency dispersion. For the governing equation selected here, we propose
a one-dimensional model for tsunami propagation that can be used to evalu-
ate the flood risk within minutes after a tsunami warning, provided that the
local response, bathymetry, and topography are well known for each location
in advance.

2. Deep-Ocean Signature of the 4 October 1994
Shikotan Tsunami

The Pacific Marine Environmental Laboratory (PMEL/NOAA) has devel-
oped a long-term monitoring network of bottom pressure recorder (BPR)
stations in the Pacific Ocean with sea-level sensitivity of 1 mm (González et
al., 1987; Eble and González, 1991; Eble et al., 1989). We analyze the data
from one BPR, which contains a record of the deep-ocean signature of the
4 October 1994 Shikotan tsunami at a sampling rate of 15 s. The BPR is
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Figure 1: Travel-time chart (in hours) estimated by the two-dimensional numeri-
cal simulation of the 4 October 1994 Shikotan tsunami. The lines connecting the
tsunami source with Kahului Bay, Wake Island, and the BPR location are the paths
S of minimum travel time to each location.

located about 450 km offshore in the northeast Pacific (45.95◦N, 129.99◦W),
at a depth of 1550 m and approximately at a distance of 6300 km from the
tsunami source (Fig. 1).

A comprehensive analysis requires the estimation of the tsunami path
(S) from the source to the BPR location, as well as the synthetic tsunami
data for comparison. A preliminary numerical simulation of the Shikotan
tsunami was performed using the shallow water equations (Pedlosky, 1979):

∂η

∂t
+ ∇ · M = 0

(1)
∂M
∂t

+ gh∇η + 2Ω × M = 0

where t is time, η is the vertical displacement of the water surface above the
normal water level, h is the ocean depth, M is the horizontal depth-averaged
volume flux vector, g is the gravitational acceleration and Ω is the angular
velocity of the Earth.

Equations (1) were solved in spherical coordinates using the finite differ-
ence method with a staggered leap-frog scheme (Goto et al., 1997). The grid
size was set to 4 min and the time step to 5 s. The bathymetry was taken
from the ETOPO-2 data bank (Smith and Sandwell, 1997). The rupture
parameters of the 4 October 1994 earthquake were taken from Kikuchi and
Kanamori (1995), considering a steep fault (strike, dip, rake) = (49◦, 75◦,
125◦), and a uniform dislocation of 5.6 m over the fault area of 120× 60 km.
The vertical movement of the sea floor was computed using the dislocation
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Figure 2: The 4 October 1994 Shikotan tsunami at the BPR location: Observed
tsunami (line with circles) and synthetic tsunami (solid line) obtained by the two-
dimensional numerical simulation. The origin of the time axis is defined as the
origin time of the earthquake (13:22:58.1; UT).

model of Mansinha and Smylie (1971). As an initial condition, the sea-level
change due to the rupture was taken to be the same as the instantaneous
sea-floor uplift computed by the dislocation model.

The path S was obtained from the travel-time chart (Fig. 1), based on the
identification of the tsunami wave front at every time step in the numerical
model. Once the travel time matrix is obtained, the path can be computed
as orthogonal to the wave fronts. The bathymetric profile along the path was
obtained by linear interpolation from the ETOPO-2 data bank. Synthetic
time series of vertical displacements of the water surface at the location of the
BPR were obtained from the numerical simulation of the tsunami. Figure 2
shows the excellent agreement between the observed and synthetic tsunamis.
In the synthetic tsunami, the two oscillations that follow the main peak are
produced clearly by numerical dispersion. The later high-frequency waves
are produced by interaction of the wave front with the bathymetry. The two
subsequent oscillations are barely seen in the BPR data due to background
noise.

A BPR spectrogram, where energy contours are mapped in time-frequen-
cy space, was used to estimate the evolution of tsunami energy as a function
of time and frequency (Fig. 3a). The spectrogram, z, was computed using
the complex demodulation concept (Ortiz, 2000):

z

f =
fN

a
, t

 =
fN

a
√

2π

∞∫
−∞

η(τ)e−(t−τ)2(fN /2a)2e−i2πfN (t−τ)/adτ (2)

In (2), f = ω/2π is the cyclic frequency, ω is the angular frequency,
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Figure 3: (a) Spectrogram of the BPR data and (b) spectrogram of the synthetic
tsunami. Energy contours in both spectrograms are normalized by the maximum
value. The trace of the arrival time function ta(f) is indicated in both figures by
the solid line with circles. The origin of the time axis is defined as the origin time
of the earthquake.

and fN the Nyquist frequency. The parameter, a, controls the width of the
bandpass filters employed in the demodulation.

Frequency dispersion in the BPR spectrogram is indicated by the cur-
vature of the energy ridge. A similar dispersive pattern can be observed in
the spectrogram of the synthetic tsunami (Fig. 3b). The energy ridge in
the BPR spectrogram reproduces well the arrival as a function of frequency,
ta(f), as prescribed by the linear Boussinesq equations (Liu et al., 1995):

∂η

∂t
+ ∇ · M = 0

(3)
∂M
∂t

+ gh∇η + 2Ω × M = ∇
[
h3

3
∂

∂t
∇ ·
(

M
h

)]
.

The arrival time for each frequency was computed from the equation

ta(f) =
∫
s

dS

Cg(f, S)
, (4)
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where Cg(f, S) is the group velocity derived from the one-dimensional form
of (3) along the path from the tsunami source (43.48◦N, 147.40◦E) to the
location of the BPR:

Cg(f, S) =

√
gh(S)

(
3 − 2k2h2(S)

)
3
√

1 − k2h(S)2/3
(5)

f =
k

2π

√
(1 − k2h2(S)/3) gh(S) ,

where k is the wave number.
The trace of the arrival time ta(f) is well reproduced by the spectrogram

of the synthetic tsunami (Fig. 3b). The Imamura number is ∼0.7 along
90% of the path; thus the numerical results mimic the frequency dispersion
prescribed by the Boussinesq equations (Imamura et al., 1990; Shuto et al.,
1991; Satake et al., 1995).

In conclusion, the deep-ocean signature of the 4 October 1994 Shikotan
tsunami is consistent with a frequency dispersion as computed from the
Boussinesq equations. For modeling the transoceanic tsunami propagation,
a higher order dispersion relationship is not required. Let us now find out
whether Boussinesq dispersion is a necessary condition for large tsunamis,
or whether the non-dispersive condition wave celerity ≈ √

gh is sufficient.

3. Frequency Dispersion, a Necessary Condition
for Large Tsunamis

The simulated height of the leading wave of tsunamis, from dispersive or non-
dispersive theories, depends largely on the ocean depth and on the tsunami
initial condition, i.e., on the spectral distribution of its energy. Consider
the two-dimensional propagation in a plane sheet of water of uniform depth
(h = 3000 m) of two tsunamis of different size. A representative medium-size
tsunami was selected as the largest among those which occurred in Mexico,
1985 (Anderson et al., 1986), Nicaragua, 1992 (Satake et al., 1993), Flores
Island, 1992 (Yeh et al., 1993), Shikotan, 1994 (Kikuchi and Kanamori,
1995), and Jalisco, 1995 (Ortiz et al., 1998). This tsunami is assumed as
being generated by a reverse fault of width W = 70 km, length L = 200
km, dip angle of 30◦, slip magnitude of 4 m, and a shallow edge at a depth
of 15 km. For the large tsunami, the fault parameters of the 22 May 1960
Chilean tsunami were assumed (Kanamori and Ciper, 1974; L = 800 km,
W = 200 km, dip angle of 10◦, slip magnitude of 24 m, shallow depth
of 25 km). The two-dimensional initial conditions of large and medium
size tsunamis (Figs. 4a, b) were computed from the dislocation model of
Mansinha and Smylie (1971).

The transoceanic propagation was computed from both dispersive and
non-dispersive theories, i.e., the linear shallow water equations (1) and the
linear Boussinesq equations (3), neglecting the Earth rotation. The solution
of (1) and (3) in a closed plane sheet of water of uniform depth, can be
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Figure 4: Two-dimensional tsunami initial condition projected along the principal
axis, i.e., the axis perpendicular to the strike of the fault plane. (a) Medium size
tsunami and (b) large tsunami. The tsunami initial condition was taken to be the
same as the instantaneous sea-floor uplift computed by the dislocation model of
Mansinha and Smylie (1971).

expressed as a single equation in rectangular coordinates (0 ≤ x ≤ a; 0 ≤
y ≤ b) (Lamb, 1932):

η(x, y, t) =
∑
m

∑
n

Am,n cos(mπx/a) cos(nπy/b) cos(Ckt)

(6)
k2 = π2(m2/a2 + n2/b2) ,

where k is the wavenumber, C is the wave celerity, Am,n are the Fourier
coefficients, and a and b are the length and width of the rectangular coordi-
nate domain. The solution of (1) was obtained by setting C = C0 =

√
gh,

whereas the solution of (3) was obtained for the dispersion relationship

C = ω/k = C0

√
1 − k2h2/3 , (7)

After propagating 6000 km from the source, along an axis perpendicular
to the strike of the fault plane (to be referred as principal axis), the height
of the leading wave of the medium or large tsunami evaluated by means of
the non-dispersive theory exceeded by ∼200% or ∼60% the height of the
leading wave computed from dispersive theory. Differences are less than
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Figure 5: Medium size tsunami after being propagated a distance of 6000 km from
its origin by employing dispersive theory (line with circles) and nondispersive theory
(solid line). (a) Along the principal axis and (b) along the diagonal axis.

20% along the diagonal and parallel axis for both tsunamis, due to the two-
dimensional geometrical spreading acting like a damping factor proportional
to the propagation distance and to the wavenumber. Without dispersion,
the short-wave components at the wave front, between the diagonal and
parallel axis, are attenuated by the damping factor. When dispersion is
acting, the short waves are left behind the wave front and are attenuated
by the damping factor. This mechanism minimizes the differences in the
wave height resulting from dispersive and non-dispersive theories for diagonal
and parallel propagation. Along the principal axis, the tsunami directivity
minimizes wave spreading, and the short wave components produce large
differences in the wave front. Figures 5 (a, b) and 6 (a, b) compare the
waveform of medium and large-size tsunamis, as computed using dispersive
and non-dispersive theories. In order to estimate the significance of the
differences in the wave height in terms of flooding, the run-up produced for
both kinds of tsunamis was computed using the one-dimensional nonlinear
shallow water equations

∂η

∂t
+
∂M
∂t

= 0

(8)
∂M
∂t

+
∂

∂x

(
M2

D

)
+ gD

∂η

∂x
= 0 ,
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Figure 6: Large tsunami after being propagated a distance of 6000 km from its
origin by employing dispersive theory (line with circles) and nondispersive theory
(solid line). (a) Along the principal axis and (b) along the diagonal axis.

where D = η + h.
Equations (8) were solved by an explicit finite-difference scheme de-

scribed by Goto et al. (1997). The grid size was set to 10 m and the time
step to 1/20 s. The deep-water tsunami waveforms in Figs. 5a and 6a were
propagated to the coast using the bathymetric profile (Fig. 7) taken from the
Pacific Central Coast of Mexico, i.e., a near constant ocean depth connected
to a deep trench and to a pronounced continental slope, ending in a narrow
length continental shelf. The beach slope was assumed to be 5%.

The amplification factors for medium and large tsunamis were 4 and 3,
respectively. Thus dispersion is a necessary condition to adequately repro-
duce the coastal effects, since differences in the height predictions of the
leading wave in deep ocean can produce significant differences in coastal
run-up. Thus, for the large tsunami (Fig. 6a), overestimations of up to 3 m
in run-up can occur with the non-dispersive theory. The oscillatory tail
shown in Figs. 5a and 6a, caused by frequency dispersion, can contribute
to producing a significant difference between the predictions of dispersive or
non-dispersive theories, as the oscillations interacting with the continental
slope can produce a resonance pattern with a maximum amplitude occurring
several minutes after the arrival of the leading wave. This may be a cause
of the resonance pattern observed in Kahului and Hilo, as we will see later
(Figs. 11b and 12).
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Figure 7: Employed bathymetric profile to propagate the deep-water tsunami
waveforms in Figs. 5a and 6a, to the coast.

Finally, when Boussinesq equations are solved by finite difference meth-
ods, the solution will contain effects of strong numerical dispersion and dissi-
pation introduced by the finite difference representation of the higher-order
derivatives. The overall effect will be to underestimate the height of the
leading wave as opposed to the analytical solution. Figure 8 illustrates a
particular example, where the solution obtained by finite differences under-
estimates by ∼30% the height of the leading wave with respect to the height
obtained for the analytical solution.

4. A Simplified Model for Transoceanic Tsunami
Propagation

The numerical simulation of transoceanic tsunamis requires a major com-
putational effort to provide real-time tsunami warnings. A one-dimensional
method to estimate the height of the leading wave is proposed here, not
instead of, but in addition to early tsunami warnings.

Two-dimensional axisymmetric long-wave propagation in an ocean of
constant depth, without considering Earth rotation, is represented by the
one-dimensional zero-order Bessel equation obtained from equations (1) in
polar coordinates (r, θ). The classical solution is (Lamb, 1932):

η(r, t) =
∑
n

BnJ0(knr) cos(ωt) , (9)
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Figure 8: One-dimensional propagation of the medium size tsunami after being
propagated a distance of 2700 km from its origin: By means of the analytical
solution of Boussinesq equations by Fourier series (line with circles) and by the
numerical solution of Boussinesq equations by the finite difference method (solid
line).

where J0 is the Bessel function of zero order and r is the radial distance
from the origin of the disturbance. The damping function, H, due to two-
dimensional wave spreading, is given by the modulus of the Hankel function:

H(k, r) =

√
2
πkr

. (10)

Since the directivity of the tsunami depends on the rupture length, L,
and on θ, the damping function can be modified by introducing a suitable
directivity function, β(L, θ), that measures the departure from axisymmetric
wave spreading:

H̃(k, r) =
√

2
πkrβ

. (11)

Figure 9 illustrates the directivity function obtained numerically from
comparison of the two-dimensional tsunami propagation obtained by means
of (6) and (7) with one-dimensional propagation obtained by means of (8).
The nonlinear term in (8) was dropped, and the Imamura number was set
to 0.6. In the experiments, L was varied between 100 km and 1000 km at
steps of 50 km, while W was set to L/4. The principal axis was oriented at
θ = 90◦. The directivity function was assumed at r = 6000 km for values
of θ from 0◦ to 90◦ at steps of 10◦. In all experiments the wavelength of
the leading wave is ∼2W; thus the energy spectrum will be concentrated
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Figure 9: Directivity function, β(L, θ); θ = 90◦ is the direction of the principal
axis. Numbers in degrees indicate the angle θ.

around k0 = π/W . Therefore, the directivity function can be taken as an
estimate for the most significant wavenumber, k = k0. This approximation
has the advantage of having a single spectral value of H̃ for correcting the
amplitude in results obtained with the one-dimensional model. Summariz-
ing, the damping function becomes a damping factor that can be estimated
as a function of the directivity, β, the rupture length, L, and the distance,
r, from the source along the path S:

H̃(L, r, β) =

√
L

2π2rβ(L, θ)
(12)

Figure 10a shows a synthetic tsunami, η(r0, t), computed at the loca-
tion of the BPR by one-dimensional propagation of the Shikotan tsunami
along the path S, shown in Fig. 1. Figure 10b compares the BPR data and
the synthetic tsunami corrected by the damping factor, i.e., η̃ = H̃η(r0, t),
where r0 = 6370 km, and the directivity function as taken from Fig. 9 is
β(120 km, 30◦). There is an excellent agreement between the BPR data
and the corrected synthetic tsunami, even when the angle in the directivity
function varies from 20◦ to 40◦.

In order to assess the efficiency of the directivity function, the one-
dimensional simulation of the 4 October 1994 Shikotan tsunami was prop-
agated along the paths to Wake Island and to Kahului Bay (Hawaii) up to
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Figure 10: (a) The synthetic 4 October 1994 Shikotan tsunami at the BPR location
obtained by the one-dimensional model without considering the directivity function.
(b) Comparison of the observed 4 October 1994 Shikotan tsunami (BPR data; line
with circles) with the synthetic one-dimensional tsunami (solid line) corrected by
the directivity function β(120 km, 30◦). Dotted lines correspond to the synthetic
tsunami corrected by using β(120 km, 20◦) and β(120 km, 40◦). The origin of the
time axis is defined as the origin time of the earthquake.

a depth of 10 m. The leading wave of the synthetic tsunami is only 2 cm
(∼20%) larger than that observed at Wake Island (Fig. 11a). The directivity
function was taken as β(120 km, 90◦) = 0.44, and r0 = 3200 km. Both the
amplitude of the leading wave and the following oscillations reproduce ap-
proximately the amplitude and periods of the observed tsunami. Since the
shape of the harbor cannot be represented in the one-dimensional model,
the results suggest that the resonance period (∼14 min) observed at Wake
Island is primarily due to the steep grade of the island slope into the deep-
ocean. The travel time (∼7 min) for a barotropic wave from the coast to
the edge of the island slope was computed from the bathymetric profile and
is consistent with the resonance period.

Kahului Bay was chosen as an extreme test for the one-dimensional
model. This is a v-shaped Bay that will increase the amplitude of any incom-
ing plane wave front; it is located in a caustic region of ray convergence for
this particular tsunami (see Fig. 1). Figure 11b shows a comparison between
the observed and synthetic tsunami at Kahului. The directivity function was
taken as β(120 km, 45◦) = 1.13, and r0 = 5700 km. The observed amplitude
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Figure 11: (a) Comparison of the observed 4 October 1994 Shikotan tsunami in
Wake Island (line with circles) with the synthetic one-dimensional tsunami (solid
line) corrected by using the directivity function β(120 km, 90◦). (b) Comparison of
the observed 4 October 1994 Shikotan tsunami in Kahului Bay, Hawaii (line with
circles) with the synthetic one-dimensional tsunami (solid line) corrected by using
β(120 km, 45◦). The origin of the time axis is defined as the origin time of the
earthquake.

of the leading wave is 10 cm (∼50%) larger than the synthetic amplitude.
Hence the local response of the bay must be determined in advance if this
method is going to be used for real-time warning purposes; otherwise it will
underestimate the wave heights at the coast.

As an example of the simulated one-dimensional large tsunami, the 1964
Alaska tsunami was propagated to Hilo, Hawaii. In Fig. 12, the one-
dimensional method reproduces adequately the leading wave recorded at
Hilo. The bathymetric profile from the source to Hawaii was taken along
the path that joins Hilo and the center of the rupture (150◦W, 59◦N). The
directivity function was taken as β(800 km, 40◦) = 1.55, while r0 = 4400 km.
As in the case of Wake Island, the later oscillations in the synthetic tsunami
at Hilo can be considered as evidence that the resonance period (∼40 min)
is due to the island slope. The travel time (∼20 min) from the coast to the
edge of the slope is consistent with the resonance period.

The one-dimensional model proposed here can be used as a complemen-
tary approach to evaluate the risk of potential tsunami flooding. It takes
only 2 minutes of CPU time in a Pentium-I processor to propagate a tsunami
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Figure 12: Observed 28 March 1964 Alaskan tsunami in Hilo, Hawaii (line with
circles) and the synthetic one-dimensional tsunami (solid line) corrected by using
the directivity function β(800 km, 40◦). Wide circles on the peaks of the observed
tsunami indicate the resonance period (∼40 min).

from Alaska to Hawaii. For any particular region of interest (e.g., Tsunami
Reception Region, TRR), the method requires a single two-dimensional nu-
merical tsunami propagation departing from the TRR in order to obtain
the travel-time matrix. The tsunami initial condition can be a Gaussian
surface. Once the travel-time matrix is obtained, the paths S and the corre-
sponding bathymetric profiles can be obtained for every tsunami-generating
region. They can be stored in separate files named for the coordinates of the
tsunami-generation region. An algorithm based on the rupture parameters
and on the epicenter location can compute the one-dimensional tsunami ini-
tial condition and propagate it along the selected pre-computed path. The
angle, θ, can be chosen as 90◦ or 45◦ in order to have an early estimation
of the expected maximum and medium wave height in deep ocean near the
TRR. The one-dimensional tsunami signal in deep-ocean can be used as
an input for two-dimensional near-shore tsunami propagation and run-up.
The directivity function may be improved and tested for every particular
TRR. The validity of the directivity function is conditioned to the absence
of caustic regions where tsunami convergence is expected.

5. Discussion and Conclusions

The frequency dispersion mechanism of tsunami propagation has been found
for the deep-ocean signature of the Shikotan tsunami as well as for the evo-
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lution of large and medium-size tsunamis, by comparing the linear dispersive
model with the linear non-dispersive model.

1. Frequency dispersion as prescribed by the Boussinesq equations is a
necessary and sufficient condition for the propagation of large and
medium-size tsunamis.

2. The analytical solution of the Boussinesq equations, or the numerical
solution of shallow water equations (setting the Imamura number close
to unity) should be used as the most adequate governing equations for
transoceanic tsunami propagation.

3. The use of a simplified one-dimensional method with a proposed di-
rectivity function in early tsunami warning systems may significantly
improve the wave-height predictions in real time, when the local re-
sponse and the bathymetry for each location are known in advance.
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by B. Massion, Dépt. d’Analyse, Surveillance et Environment du CEA, Paris,
61 pp.

Eble, M.C., D.M. Mattens, and H.B. Milburn (1989): Instrumentation, field opera-
tions and data processing for PMEL deep ocean bottom pressure measurements.
NOAA Technical Memorandum ERL PMEL-89 (NTIS PB90-114018), Pacific
Marine Environmental Laboratory, Seattle, WA, 71 pp.
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